Reservoir engineering of
fractured systems
(very brief overview)
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(o)
Fracture & Vuggy Porosity estimates O

» Weber & Bakker (1981) SPE 10332 No. of fields
Using cores (31), outcrops (4), material balance (19), res eng (4), logs (3)

* Monoclines & low-dip anticlines 0.01-0.1% 6

» Strongly folded anticlines 0.1 -0.3% 13

« Enhanced by leaching 0.2 -1.0% 9

« Karst aquifers, surface — shallow 0.2 -3.0% 14

» Deeply buried brecciated karst/ collapsed breccias 0.5 -2.0% 5

* Fractured chert 50 -8.0% 1

» Fractured tuffs / igneous rocks 2.0 -8.0% 3

51

« Van Golf-Racht ‘Fundamentals of Fractured Reservoir Engineering’
From core and log analysis (unspecified)

* Macrofracture network 0.01-0.5%

* Isolated fissures 0.001 - 0.01%
* Fissure network 0.01-2%

* Vugs (in Karstic rock) 0.1-3%
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()
Warren & Root dual porosity model applied to /=

pressure build-up well-tests
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Fig. 2—Horner plot of the BU data given by Bourdet et al. (1983)
after Kuchuk and Biryukov (2014).
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(o)
Material Balance; example formulation D

Rock Matrix Fractured 1 Gp
Sysfem Sysfem
g
Vel L P
Vgs
- » Rearrange terms to give linear
Vol Gas from ti . b | .
<olution equa' ion |n'0| -in-place in
matrix and in fractures
Fig. A-1 Volumetric material balance in the fractured system.
From Penuela et al. SPE 68831
e Errors can be large
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Dual porosity simulation model (™

Transfer function for flow from matrix into fractures
Direct flow between matrix blocks => dual permeability model

kmkr . a
T=0 . {(p,, — pf) + Gravity forces + Capillary forces + pore, fracture, }
- fluid vol. expansions
Viscous forces (Sudation) e _

o _|s the shape factor, 4n(r.1+2)/L. Rl NS I
n is the number of flow dimensions ‘

. . e . . . A/ 7~ = NrRVER fractures with
L is characteristic dimension of matrix block A (‘\/\<> l;’/\\/ \;‘_6\ i

[~ = A — /\ N== wsdm;:!lm;\)

k., is the matrix permeability Z INIEC e
k. is the relative permeability

u is the fluid viscosity
p,, is the average matrix pressure
ps is the fracture pressure

13 General
transfer
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* Distribution of shape factor values R — |
 Time-varying shape factors Co-current vs counter-current: Cumulative volume injected
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Frequency distribution of fracture porosity
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frequency distribution of fracture porosity
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Unsaturated fractured tuff
Illman, Water Res Res v41
(2005)

== rsingle water wells

—g'Neber Bakker

=g interpreted from SW5s
Crampin, Geophys. J. Int.

(1994) 118
Aspect ratio assumed = 0.02
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Fracture lengths and apertures

For a volume:
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Seiamic / Geologic Fault Map
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Permeabillity increases with scale of measurement
and so does porosity

Crystalline rocks

10 B Borehole ]
Y % Regional
2, [Laboratory { T S
= M
] I . e 1
E + . + 4
& 20| J1'H ]
as‘ L]
= 4 * Midrange

-25 i 1 Lo 1 1. 1 1 ]

2 -1 0 1 2 3 4 5
log,, Support Scale (m)

Figure 9. Permeability of crystalline rocks as a function of
experimental scale. After Clauser [1992], adapted by Neuman
[1994].
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‘Double porosity’
limestone/dolomite
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@ Pemmeameter Tests
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+ Specific Capacity Tesls,
jonal Flow Model
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Figure 11.

Hydraulic conductivity versus inferred support volume in “double-porosity™ limestone-domi-
nated Sinnipee Group of northeastern Illinois and southern Wisconsin. After Schulze-Makuch et al. [1999].
Reprinted from Ground Water with permission of the National Ground Water Association. Copyright 1999,

Fractured granite
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Cross-hole hydraulic tests
[llman & Tartakovsky, Ground Water 2006 v44(4)



Well-test poroperms in fractured reservoirs are

weakly related to fracture densities in wells
lllman, 2005, WATER RESOURCES RESEARCH, VOL. 41

Connectivity
l Scale-dependency _
increasing fracture
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P. Davy et al., EGU, Vienna, 2008

Fracture density from BHTV (counts/m) Fracture Connectivity IS COmpleX!
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Fractured reservoirs contain only a few  /m

very productive wells

Cumulative frequency distributions of
relative well productivities

e Giant field
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Time-dependent well-test permeabilities

(large carbonate field)

frequency distribution of d(kh)/dt
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Of the wells with multiple tests, 20% showed

rates of change of Kh more than 10% per

annum
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Field Directionality is a vital influence on recovery.

Areal sweep efficiency and anisotropic permeability

(classic: Caudle 1959)

For a 5 spot pattern of wells:
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Physical model with Kmax/Kmin = 16

Areal sweep efficiency, %

To breakthough:
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Strain modelling for fracture spatial distribution

from palinspastic reconstruction of structure followed by FE forward modelling of
structural history -> inelastic strains

REB model, E-W contraction with N-S dextral shear, structuring from surface down
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Test permeabilities, md

Combination of structural &
depletion effects — predicted
permeability vs actual r>~ 0.6
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Time-dependent fracture permeability s
Exacerbation of thief layer (higher density fracturing) by cooling & pressurisation — coupled
geomechanical-flow modelling

Permeabilities across cross-section

Go)

Layered carbonate reservoir Final. after
significant
initial time of cool
water
injection

Ratio, final/initial
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. . )
Well flowrate fluctuation correlations follow /=
structural trends

Structural
lineaments
Porosity
trends
Core
fracture
density
trends

Composite of
all 4 principal
components L&
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(o)

Scientific test of a model is whether it can skilfully predict new data @Q

Probabillistic forecasts vs reality

Comparison between probabilistic forecast of production! and subsequent actual production? from 4
fractured chalk/sst fields in a Norwegian production licence

' —s— PLO18 data
—— N0, 1)
g — N(0,3)
-]
=
H
T

(Actual-E V)istd.dev.

The distribution of normalised errors* in prediction is much wider than the forecast uncertainties.
The standard deviation of errors appears to be ~3 x predicted standard deviation.

lpublished by Jensen, T.B. in SPE 49091, 1998
2published by Norwegian Petroleum Directorate on website: http://factpages.npd.no/factpages/

* each difference normalised by prediction standard deviation, which was estimated from forecasts as (P90-P10)/2.56.
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http://factpages.npd.no/factpages/

The Naked Truth?

“All models are wrong; some are usefu
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George Box



