

Reservoir engineering of fractured systems (very brief overview)

Kes Heffer Reservoir Dynamics Ltd.

Fracture & Vuggy Porosity estimates

 Weber & Bakker (1981) SPE 10332 		No. of fields		
Using cores (31), outcrops (4), material balance (19), res eng (4), logs (3)				
 Monoclines & low-dip anticlines 	0.01 - 0.1%	6		
 Strongly folded anticlines 	0.1 - 0.3%	13		
 Enhanced by leaching 	0.2 - 1.0%	9		
 Karst aquifers, surface – shallow 	0.2 - 3.0%	14		
 Deeply buried brecciated karst/ collapsed breccias 	0.5 - 2.0%	5		
Fractured chert	5.0 - 8.0%	1		
Fractured tuffs / igneous rocks	2.0 - 8.0%	3		
		-		
		51		
 Van Golf-Racht 'Fundamentals of Fractured Reservoir Engineering' 				

From core and log analysis (unspecified)

•	Macrofracture network	0.01 - 0.5%
•	Isolated fissures	0.001 - 0.01%
٠	Fissure network	0.01 - 2%
•	Vugs (in Karstic rock)	0.1 - 3%

Warren & Root dual porosity model applied to pressure build-up well-tests

Proportion of storage due to fractures $\omega =$

What is fracture compressibility, $C_{\rm f}$?? Local fracture storage masks 1st straight line

Fig. 1 Normalized porosity of the fractured and matrix systems as a function of hydrostatic confining pressure (After Nelson⁸).

Material Balance; example formulation

Fig. A-1 Volumetric material balance in the fractured system. From Penuela et al. SPE 68831

$$V_{\rm ofi} + V_{\rm gfi} = V_{\rm of\,2} + V_{\rm gf\,2} + V_{\rm o\,1} + V_{\rm g\,1} - V_{\rm o\,2} - V_{\rm g\,2} + \Delta V_{\rm fw} + \Delta V_{\rm f}$$

Initial oil + gas in fractures = Later oil + gas in fractures + dil + gasfrom matrix produced + Expansion of fracture water Or gas-cap expansion Or aquifer influx Rearrange terms to give linear equation in oil-in-place in matrix and in fractures

- Errors can be large
- Non-uniform pressures (esp. poor communication between matrix & fractures)
- Reservoir pressure ~ bubble point and gas comes out of solution

•

RDL

Frequency distribution of fracture porosity

Fracture lengths and apertures

Permeability increases with scale of measurement and so does porosity

Figure 9. Permeability of crystalline rocks as a function of experimental scale. After *Clauser* [1992], adapted by *Neuman* [1994].

nated Sinnipee Group of northeastern Illinois and southern Wisconsin. After Schulze-Makuch et al. [1999]

Reprinted from Ground Water with permission of the National Ground Water Association. Copyright 1999.

Fractured granite

Cross-hole hydraulic tests Illman & Tartakovsky, Ground Water 2006 v44(4)

Well-test poroperms in fractured reservoirs are weakly related to fracture densities in wells Illman, 2005, WATER RESOURCES RESEARCH, VOL. 41

Fractured reservoirs contain only a few very productive wells

Time-dependent well-test permeabilities

(large carbonate field)

Field Directionality is a vital influence on recovery. Areal sweep efficiency and anisotropic permeability (classic: Caudle 1959)

Orientation $(+/-45^{\circ})$ of well pattern relative to permeability axes can change recoveries by 10's of % points

RDI

700

Flooding directionalities

Shmax

Strain modelling for fracture spatial distribution

from palinspastic reconstruction of structure followed by FE forward modelling of structural history -> inelastic strains

700

Time-dependent fracture permeability

Exacerbation of thief layer (higher density fracturing) by cooling & pressurisation – coupled geomechanical-flow modelling

Permeabilities across cross-section

Layered carbonate reservoir

initial

Final, after significant time of cool water injection

700

Ratio, final/initial

Well flowrate fluctuation correlations follow structural trends

Structural lineaments Porosity trends Core fracture density trends

Scientific test of a model is whether it can skilfully predict new data Probabilistic forecasts vs reality

Comparison between probabilistic forecast of production¹ and subsequent actual production² from 4 fractured chalk/sst fields in a Norwegian production licence

The distribution of normalised errors^{*} in prediction is much wider than the forecast uncertainties. The standard deviation of errors appears to be $\sim 3 \times$ predicted standard deviation.

¹published by Jensen, T.B. in SPE 49091, 1998

²published by Norwegian Petroleum Directorate on website: <u>http://factpages.npd.no/factpages/</u>

* each difference normalised by prediction standard deviation, which was estimated from forecasts as (P90-P10)/2.56. *Finding Petroleum 16 May 2017*

708

The Naked Truth?

RDL

700

"All models are wrong; some are useful" George Box