Finding Petroleum Meeting, 16th May 2017, Geological Society of London

Fractured Carbonate Reservoirs A geological point of view

Benoit VINCENT, Andy HORBURY & Joanna GARLAND

Cambridge Carbonates Ltd

INTRODUCTION

Introduction

Introduction

- Carbonate reservoirs are often dual porosity systems with matrix (*s.l.*) and "megapores"
- This is not the case for clastic reservoirs
 - More than 50% of carbonate reservoirs are described as "fractured"
 - Less than 10% of siliciclastic reservoirs are described as "fractured"
- If fracture systems are purely structural there should be minor difference between carbonate and siliciclastic reservoirs
 - Karst reservoirs! → using fracture models only in carbonates may give the wrong answer a significant percentage of the time!
- But fractured carbonates do exist and represent challenging reservoirs

Tectonically fractured carbonates

VARIOUS TYPES OF <u>TECTONICALLY</u> FRACTURED CARBONATE RESERVOIRS

A classification

- Fractured reservoirs (Nelson, 2001):
 - **Type I**: Almost all porosity and permeability in fractures
 - **Type II**: Main porosity in matrix, main permeability in fractures
 - Type III: Main porosity and permeability in matrix, fractures enhances permeability
 - Type M: Main porosity and permeability in matrix, fractures causes anisotropy

Type I – mostly deep water carbonates

- Storage and productivity of hydrocarbons restricted to fractures alone
- Very low permeability matrix to these reservoirs
 - Matrix is variably water-wet
 - Examples
 - Ain Zalah field (northern Iraq) = relatively light oil (31.5°API) + matrix is water-wet
 - Ebano-Panuco fields (Mexico) = heavy oils dominate (10-13°API) + matrix is variably oil saturated → "false" OWC's with some intervals being 100% water-saturated within the oil leg
- Early water break-through = fine tuning of production rates
- Distribution of fractures is often not straightforward + connectivity clearly dependant on structural history and nature of the host rocks
 - The crest of the structure is NOT ALWAYS the location of the highest density of fractures
 - Ain Zalah field: highest productivity is offset from the crest due to multi-stage structuration
- Fracture porosity <1%

Type II – mostly shallow water carbonates

Matrix porosities can be good <u>BUT</u> matrix permeabilities tend to be poor

- Fractures are required in order to attain good production rates and maintain long-term production
- Production can be heterogeneous or homogenous which depends on density and distribution of fractures
 - Kirkuk field = reservoirs so highly fractured and well-connected that pressure drops over the field (100km long structure) = instantaneous
 - However, other fields exhibit differential fracturing, and well productivity is far more heterogeneous (Masjed-e-Sulaiman, Iran; Gibson, 1948)
 - Shutting-in wells with high water-cut may allow the matrix to recharge the fracture system, and waterfree production can be resumed (*i.e.* Masjed-e-Sulaiman field, Iran)
- Fracture porosity commonly <0.5%

Type II

- Fractured chalk reservoirs are an important example of TYPE II reservoirs = high porosity (typically >30%) <u>BUT</u> microporosity with small pore-throats → Oil is stored in both the matrix and fractures
 - Fracturing is required to produce the oil at economically sustainable rates

Type II

Fields with fracture component – Zagros FTB

Type of reservoir	Examples	
<i>Type I: no significant matrix porosity (or water wet)</i>	Ain Zalah, Butmah, Kirkuk (1), Souedie, Karatchok, Gbeibe and Jebissa	Late Cretaceous (deep water carbonates)
<i>Type II: dual porosity systems</i>	Kirkuk (2), Masjed-e-Suleyman, Gachsaran, Bibi Hamikeh, Agha Jari, Haft Kel, Naft-e- Shah (Iran and Iraq)	Cenozoic (shallow water carbonates mostly)

PROPERTIES OF FRACTURED CARBONATE RESERVOIRS

Important parameters and some numbers

Fracture porosity

Field	Fracture porosity	
Agha Jari	0.22%	
Haft-Kel	0.21%	
Masjed-e-Suleyman	0.20%	
Masjed-e-Suleyman (Asaib sector)	3% of total porosity	
Collated by CCL based on Gibson (1948): Weber and Bakker (1981)		

Usually very low fracture porosity
BUT

- Major faults can be associated with breccia zones and 'tectonic caves' (porosities of cave-size within fault systems)
- Solution-enlarged fractures
- Porosity locally increased up to 5%

Fracture porosity

Distribution of fracture porosity across the Gachsaran structure

• Locally up to 0.4% in other structure in the Zagros (Weber and Bakker, 1981)

Poroperm properties

Poroperm properties

- W=1-2.5mm
 - Masjed-e-Sulaiman, Iran (Gibson, 1948)
 - Experimental work based on production data

• W=0.1-0.5mm

– Weber and Bakker (1981)

General characteristics

- Fractured shallow-water carbonate fields (Type II) and fractured deep-water carbonate fields (Type I) follow a standard porosity envelope curve of decreasing porosity with depth
 - Fractured deep-water carbonates (Type I) = low total porosity (always below 10%)
 - Fractured shallow-water carbonates (Type II) = considerable variation in porosity
 - Fractured chalk fields = characteristically high porosities (up to >40% average)

Cambridge Carbonates Ltd. multiclient report

Controlling factors and impacts on reservoirs

FRACTURE DISTRIBUTION AND DENSITY

Controlling factors – Fracture types and distribution

- Fractures and faults form through deformation
 - Follows some established classifications
 - Orientation(s) depends on stress direction(s)
- Sequence of fracture formation during fold development
 - T then R or Type 1 then Type 2
- Some pre-existing fractures may exist!
 - inherited

Controlling factors – Folding and structural position

• Fracture intensity/density is usually higher in crest area and forelimb

CC

Controlling factors – Folding and structural position

Sheep Mountain anticline, Madison Formation (Mississippian), USA

(outcrop analogue to oil/gas fields Wind River and Big Horn basins)

Controlling factors – Mechanical stratigraphy

- Two types of fractures are commonly recognised in fractured carbonate reservoirs/structures
 - Diffuse fractures
 - Stratabound
 - Controlled by mechanical stratigraphy
 - mechanical unit thickness
 - material properties (depositional facies, diagenesis)
 - strength of the interfaces between units = inter-unit shearing

Corbett et al. (1987); Gross et al. (1995); Cooke and Underwood (2001)

- Fracture swarm (fault damage zones or narrow zones of intense fracturing; Wennberg et al., 2007)
 - Cut through the units

Controlling factors – Mechanical stratigraphy

De Keijzer et al. (2007)

CC

Controlling factors – Mechanical unit thickness

Relationship between bed thickness and average fracture density from the Kuh-e-Asmari anticline outcrop study in Iran

Relationship between bed thickness and density of small scale fractures from anticlines selected from a large area of Zagros foothills

Histograms show fracture density distributions by azimuth classes

From McQuillan (1984)

Controlling factors – Mechanical unit thickness + material properties

- For a given unit thickness
 - Higher fracture intensity for mudstone textures
 - More brittle?
 - Less interfaces (grains-matrix) for development of shearing?

- Tight mudstone and porous mudstone may react differently to stress
 - Greater potential for accommodation of deformation in porous material

Wennberg et al. (2007)

Controlling factors – Material properties

- "Dolomite tend to develop fractures more readily than limestone" (Purser et al, 1994; Nelson, 2001; Ortega and Marrett, 2001; Gale et al., 2004; Philip et al., 2005; Ortega et al., 2006...)
- Diffuse fracturing is more pronounced in dolomite

Sheep Mountain anticline, Madison Formation (Mississippian), USA

Impact on reservoirs

- Asmari fields (Wennberg et al., 2007)
 - Diffuse fractures
 - very important in linking fault damage zones
 - form a well-developed background fracture network which may facilitate high production over a significant time (draining a porous matrix or not)
 - Large-scale lineaments
 - connect fissures, joints and caverns occur over a wide area
 - major influence of fluid circulation
 - associated with early water and/or gas break through

Wennberg et al. (2007)

Impact on reservoirs

Zinszner and Pellerin (2007)

Impact on reservoirs

CC

IDENTIFYING TECTONICALLY FRACTURED CARBONATE RESERVOIRS

Fractured reservoirs – Identification

- Fracture indicators
 - Open natural fractures are seen in core or on borehole image logs
 - K test >> K matrix
 - Reservoir heterogeneity (production)
 - Correlation between PLT and fracture occurrence
 - Mud loss (but large non-curable mud losses likely indicate karst systems)
 - Rapid water/gas breakthrough

P-45

Fracture analysis from image logs

Cambridge Carbonates Ltd. confidential report

SUMMARY – TAKE AWAY POINTS

Structural model

- Fractured reservoir identification
 - Dual porosity system may have another explanation (karst)
- Fracture analysis
 - Type of fractures: diffuse vs. swarmlarge-corridors
 - Timing
 - Distribution and density of fractures: mechanical stratigraphy
- Structural model
- Subsurface reservoir (FMI+all other tools) <u>AND/OR</u> outcrop analogue

Importance of analogues in the Zagros FTB

Some removed images and data are from:

"Fractured Carbonate Reservoirs - A Synthesis of Analogues" Cambridge Carbonates Ltd. multiclient report

http://www.cambridgecarbonates.com/

http://www.cambridgecarbonates.com/key-products.html

(expert reports, fractured reservoirs)

